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BACKGROUND

• Partial Differential Equations (PDEs)
Fundamental models in physics, engineering, economics and biology for describing 

spatial–temporal processes.

Traditional solvers (finite difference/element/volume) discretize domains into 

millions of grids, leading to high computational cost.

• Physics-Informed Neural Networks (PINNs)
Encode PDE residuals + boundary/initial conditions into a neural-network loss 

function.

Enable data-driven, mesh-free solutions for both forward (known PDE → solution) 

and inverse (unknown parameters → learned) problems.

• Seawater Temperature Diffusion
Governs ocean heat transport, currents, and climatic interactions.

Boundary conditions (Dirichlet: fixed SST; Neumann: surface heat flux; Robin: 

mixed) critically affect solution stability and accuracy.

• Gap & Contribution
Existing PINN studies apply to heat conduction but lack side-by-side comparisons 

under Dirichlet/Neumann/Robin conditions and sensitivity to observation 

number/location.

This work:
1. Compares PINN performance for forward/inverse seawater diffusion under three 

boundary-condition types.

2. Examines loss-term weighting effects.

3. Assesses how observation density and placement influence solution and 

parameter recovery.

4. Validates methods with Argo profiles in the north-central Pacific.

RESULTS
Sensitivity of Loss-Function Weights

Fig.2 L2 relative error (a)-(c) and mean PDE residual (d)-(f) for experiments with different loss 

function weighting coefficients in the solution of the inverse temperature diffusion equation. 

Key Findings:

• PDE weight: Raising from 0.01→10 steadily cuts L₂ error & mean residual. Beyond 

10→100, gains plateau—and under Dirichlet even reverse, as BC/IC get 

under-emphasized.

• BC/IC weights: Little effect up to 1; errors spike sharply when ≥10 (over-penalizing 

boundaries or initial conditions).

• Data weight: Mirrors BC behavior: optimal near 1, large values (≥10) degrade both 

error and residual.

METHODS
Simplified Seawater Temperature Diffusion
• Assumption: Horizontal advection is negligible → vertical diffusion dominates.

• Governing equation:
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where T is the seawater temperature, t is time, z is the vertical coordinate, and kz is the 

vertical temperature diffusion coefficient.

PINNs Framework

Fig. 1 Schematic of PINN training, showing PDE, BC, IC and data-driven loss components.

RESULTS
Boundary-Condition Scenarios
Dirichlet (Fixed-T):                                     Neumann (No-Flux):
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Table 1 Error metrics for the solution of forward and inverse problems of the temperature 

diffusion equation under three boundary conditions using PINN.

  

Instances
Mean PDE Residual

(×10-5)

L2 Relative Error

(×10-5)
MAE (×10-6)

𝐤𝐳 Absolute Error

(×10-7)

DE_Dir_FWD 3.6585±0.7259 1.9540±0.2034 5.5912±1.5139 -

DE_Neum_FWD 3.1366±0.9654 1.7306±0.5565 5.3412±2.8130 -

DE_Rob_FWD 17.135±6.0176 3.4923±1.5377 25.697±19.063 -

DE_Dir_INV 6.9700±1.8656 3.3431±1.2058 10.163±1.4692 3.6295±2.1385

DE_Neum_INV 7.6856±1.2273 4.1509±0.7079 9.7766±3.5303 3.7775±2.5635

DE_Rob_INV 17.347±5.3748 2.9369±1.5615 20.207±16.128 8.0050±4.6345

Fig.4 Estimated temperature diffusion coefficients at different 

depths across four seasons in regions 1 and 2

RESULTS
PINNs Inversion of Vertical Seawater Temperature Diffusion
Source: Argo GDAC profiles (2011–2020)

Regions:

23–27°N, 163–166°W (shallow, rugged bathymetry)

23–27°N, 166–169°W (deep, flat seabed; mean depth > 4 000 m)

Fig.3 Comparison of PINNs inverted seawater temperature and Argo observations at different 

depths in regions 1 and 2 during spring.

Vertical structure:

Both regions: PINNs accurately reconstruct Argo temperature profiles over time

Upper 400 m: relatively slow changes; below 400 m: stronger temporal variability

Topography effect:

No degradation in inversion quality for either rugged (Region 1) or flat (Region 2) 

seabed

Region 1: higher than 

Region 2, peaking in 

autumn/winter due to 

convective cooling and 

internal-tide mixing.

Region 2: lower, nearly 

constant year-round, 

reflecting limited energy 

input variations.

CONCLUSIONS
• PINNs reliably solve forward/inverse seawater diffusion, with highest accuracy under 

Dirichlet/Neumann conditions.

• Argo validation over 2011–2020 shows mean errors ≲ 10⁻³ across depths, seasons, 

and varied bathymetry.

• Recommendation: use Dirichlet (fixed SST) setups for best convergence; PINNs excel 

in sparse-data ocean PDE problems.
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