波ー流れ相互作用が海浜流系の 力学構造に及ぼす影響について

甲斐田 秀樹1·内山 雄介2

1学生会員 神戸大学大学院 工学研究科市民工学専攻 (〒657-8501 兵庫県神戸市灘区六甲台町1-1) E-mail: kaida@stu.kobe-u.ac.jp

> ²正会員 神戸大学准教授 大学院工学研究科市民工学専攻(同上) E-mail: uchiyama@harbor.kobe -u.ac.jp

Vortex-force型Euler位相平均平面二次元浅水流モデルとray theoryに基づくWKB近似を用いた屈折方程式 系(ray方程式)のカップリングモデルを用いて,流れから波へのフィードバック機構(CEW)が離岸流 場と沿岸流場および両者間の遷移過程に対して及ぼす力学的影響について検討した.運動量収支解析の結 果,遷移過程において砕波帯で生じる流れは,離岸流が卓越する場合はCEWによる波浪変形機構によって その発達が抑制されること,沿岸流が卓越する場合はCEWの効果が著しく低減し,CEWの有無による流 れ場・運動量の空間的差異が低減する傾向にあることを明らかにした.しかしながら,非定常沿岸流場で は,沿岸砂州周辺に発達する周期的なshear waveに伴う乱流運動エネルギー等がCEWによって有意に変化 することを定量的に示した.

Key Words : nearshore current system, rip currents, alongshore currents and wave-current interaction

1. はじめに

(1) 海浜流系の力学構造に関する研究背景

海岸付近の流れのうち、砕波帯内及びその付近におい て波浪によって発生する流れを海浜流と呼ぶ. 海浜流は 岸に沿って流れる沿岸流や、岸から沖へ向かって流れる 離岸流等からなり、これらを総称して一般に海浜流系と 呼ぶ.海浜流に関する研究は、長らく入射波や海底地形 との関連等について定性的に議論されるに留まっていた が、鉛直積分されたLagrange型位相平均浅水流方程式に 対してradiation stress^{1),2),3}の概念が導入されたことで、定量 的な議論が可能となった. Bowen et al.⁴)は海浜流の駆動力 としてradiation stressを用い、砕波帯内の平均水位の昇降 (wave set-upとwave set-down) メカニズムを示した. 海岸 に入射した波が砕波する状況下において、波や地形の非 一様性、エッジ波などの長周期波、流体力学的な不安定 等によって波高分布およびset-up量が沿岸方向に非一様 となることがある. これに伴って生じる沿岸方向の圧力 勾配によって流れの収束・発散が生じ、離岸流として沖 へと流れ出す. 離岸流によって沖へと輸送された海水は 方向を転じて汀線に向かう流れとなって再び岸へ戻り, 結果として平面的な海浜流セル構造が形成される⁵. ま た,離岸流は波が汀線に対して直角に近い角度で入射し た際に起こりやすく、その流速は2m/s以上に達すること がある⁹. 離岸流の発生位置は時空間的に不規則であり、 流れの強弱も時間とともに変化し、数時間で消滅するも のもあれば、長時間存在し続けるものもある.

離岸流や沿岸流等からなる海浜流系は、沿岸域におけ る海浜変形、物質輸送、生態系を含めた環境問題に対し て多大な影響を与えている.特に離岸流は、沖向きの強 い流れを伴うため、海浜利用者の安全にも強く関与して いる.また、近年の現地観測により、砕波帯-陸棚間の 海水交換に対して, 密度成層や潮汐等の影響に加えて, 波浪により駆動されるundertowや離岸流等の海浜流が重 要であることが改めて認識されつつある^{7,8}.したがっ て今日に至るまで、離岸流の発生・発達過程の定量的な 予測は工学的に極めて重要な課題である. これに対して, 離岸流に関する研究は主に現地観測・室内実験・数値解 析によって行われてきた.しかしながら、離岸流の発生 位置、タイミング、継続時間等には必ずしも明確な規則 性がないため,離岸流の定量的な発生・発達過程を予 測・評価するためには、詳細な実験・観測に加えて、モ デルによる精緻な解析を行うことが特に重要となる.

海浜流系のセル構造は Bowen⁵ により初めて定量的に 示されたが,流れから波へのフィードバック機構 (Currents Effects on Waves,以後 CEW と略称する)によ

図-1 本研究で得られた離岸流の発達パターン(充分に離岸流が発達して準定常状態に達した後の時間平均値).上図:CEWを考慮しないケース,下図:CEWを考慮したケース,カラー:Euler流速による相対渦度,コンター:Lagrange流速による流線.x = 0mが汀線に相当し,リップチャンネルはy=128mに位置している.

る海浜流系の改変機構は無視されていた.これに対して Haas et al.⁹は,室内実験と数値解析の比較を通じ,定性 的ではあるものの,CEWの影響について初めて論議し た.彼らはCEWを考慮しない場合には離岸流が沖へと 過剰に発達して十分な精度で現象を再現できない一方で, CEWを考慮すると離岸流の沖への発達が適切に抑制さ れることを定性的に示した.図-1 は本研究において得 られた離岸流の発達パターンを示しており,CEWを考 慮することにより離岸流の沖への発達が抑制されること が明示されている.Yu and Slinn¹⁰(以後YSO3と略記) はその原因が波のエネルギー平衡方程式中の radiation stressの仕事率の変化にあると結論づけたが,様々な CEWの効果の中のどの要素が最も影響力を有している のかは明らかにされなかった.

WKB 近似された波動理論の下,Primitive 方程式に対 して vortex force (以後 VF と略記)を用いたマルチスケ ール漸近展開理論に基づいて Euler 型位相平均操作を行 うことにより,波動場-位相平均流動場間における Benoulli Head や VF 等の保存的な運動量交換に加えて, 砕波や底面摩擦等による非保存的な運動量輸送を独立的 かつ Euler 的に取り扱うことが可能な枠組みが提案され, 一般的に用いられつつある^{11,12,13}. Uchiyama *et al.*¹³は, 波-流れ相互作用とは流れ場における波浪の効果 (Wave Efects on Currents,以降 WEC と略称する)および CEW の 双方向的な 2 つの機構によって構成されていると定義し た.WEC とは,Bernoulli head, VF, Stokes-Coriolis 力など の保存的な波の効果と,砕波,底面摩擦などに伴う非保 存的な波動場から流れ場への運動量輸送を表し,CEW

図-2 波-流れ相互作用の概念図.

とは、流れによる波の Doppler シフトおよび屈折効果、 wave set-down に代表される平均水深変化などから構成さ れる (図-2) . 本研究では WEC と CEW の双方を考慮 した場合を「CEW あり」, CEW の効果を無視して WEC のみを考慮した場合を「CEW なし」と定義する. 旧来の radiation stress 型の定式化ではこれらの様々な WEC を単一の radiation stress 項に集約して取り扱うため, 3 次元場や成層回転流体への拡張を行う際に, radiation stress 項を3次元的にどう表現するかという問題が生じ, 一般化することは極めて困難である¹⁴⁾.また、平面2次 元の枠組みであっても、radiation stress 項に VF の効果を 取り込むためには波動場において VF を考慮する必要が あり、そのためにはより高次の項まで含めて波浪場を表 現しなければならない¹⁵. VF 型の定式化では様々な WEC・CEW を独立かつ簡易に考慮できるため、砕波帯 などにおける複雑な物理現象の反映や、 位相平均流(海 浜流)の力学構造の解析に対して高い優位性を持つだけ ではなく, radiation stress 型のモデルと比較して砕波帯内 の流れ(特に3次元的な流れ)を高精度に再現できるこ とが示されている 13,15).

VF型モデルは砕波帯の諸問題に対して著者らによっ て適用され,いくつかの重要な成果を挙げている.例え ばWeir et al.¹⁶は,VF理論を用いて離岸流場の解析を行 い,様々なCEWの効果のうち,流れによるDopplerシ フトを通じた波動場の波数変化が離岸流の沖への発達抑 制に対して最も効果的であることを示した.内山・甲斐 田¹⁷は,離岸流場において詳細な運動量収支解析を行 い,CEWの効果である流れによる波の屈折によって運 動量収支が大きく変化し,その結果,離岸流の沖への発 達が適切に抑制されるメカニズムを明解に示した.

沿岸方向に一様なバー型海浜における沿岸流のシア不 安定(shear waveと呼ばれる)に対する波-流れ相互作用 の効果に関する研究には, radiation stressに基づくÖzkan-Haller and Li¹⁸⁾の解析や, VF型モデルを用いた Uchiyama et al.¹³⁾の解析がある.これらはいずれも 汀線に対して直角な方向から時計回りに10°の角度 で波を入射させた沿岸流場について検討したもので ある.入射角を汀線に直角な向きに徐々に変化させ ていくことにより,沿岸流場は離岸流場へと徐々に 変化するものと考えられ,Weir et al.¹⁶によればその 境界は3~4°程度とされている.しかしながら,離 岸流場から沿岸流場への遷移過程における波-流れ 相互作用の効果についての検討および沿岸方向に水 深変化(すなわちリップチャンネル)を有する海浜 における沿岸流場についての統一的な解析は未だな されていない.

(2) 本研究の目的

本研究では、沿岸方向に正弦波状の地形の起伏を 与えてモデル化したバー型海浜を対象に、固定床条 件において CEW による波浪変形効果を厳密に考慮 しつつ,沖波入射角のみを 0°(汀線に対して直角 に入射.以後,直入射と呼ぶ)から 10° まで変化さ せた定常な沖波を入射させることにより, 安定した 離岸流場、離岸流から沿岸流場への遷移過程、沿岸 流場を形成させ、その力学構造を比較検討する.具 体的には、まず、沖波入射角を変化させることで生 じる各流れ場において, 波から流れへの運動量輸送 (WEC)を独立に取り扱うことが可能な VF 型モデ ルの長所を活かし、海浜流場における波-流れ相互 作用に関する先行研究^{9),10),16)}では行われていなかっ た詳細な運動量収支解析を行う.次に,波-流れ相 互作用の中でも特に CEW による海浜流系へ力学的 な影響について明らかにするために、CEW の構成 要素に対する感度実験を行い、準定常離岸流場およ び沿岸流場での定常流および乱流成分、さらには離 岸流場から沿岸流場への遷移過程における CEW の 効果について統一的に検討する.

2. 解析モデル

本研究では、領域海洋循環モデルROMS¹⁹をベースとして開発された、Uchiyama *et al.*¹³による平面2次元数値 モデルを解析モデルとして用いる.海浜流場にはVF型 WECを導入したEuler型位相平均平面二次元浅水流モデ ルを、平面波浪場にはDopplerシフト等に代表される CEWを表現可能なアクション保存式をベースとしたray theoryに基づくWKB近似を用いた屈折方程式系(例えば、 Mei²⁰⁾.以後ray方程式と略称する)を用い、両者を双方 向的にタイトにカップリングすることにより、波一流れ 共存場を表現する.

(1) 海浜流モデル

海浜流場の解析モデルを構成する位相平均された連続 式,運動方程式はそれぞれ以下の通りである.

$$\frac{\partial \xi}{\partial t} + \nabla \cdot H \mathbf{u} = -\frac{\partial \hat{\xi}}{\partial t} - \nabla \cdot \mathbf{U}^{st}$$
(1)

$$\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} + g \nabla \zeta = \mathbf{J} + \mathbf{B} - \mathbf{D}$$
(2)

ここに、 ξ :水位、 $\hat{\xi}$:波動流速変動に伴うBernoulli head によるset down量、 $\mathbf{u} = (u, v)$:水深平均された水平Euler流 速、g:重力加速度、 $\nabla = (\partial/\partial x, \partial/\partial y)$ 、 \mathbf{U}^{s} :水深積分され たストークスドリフト速度(ストークス輸送)である. 位相平均水位 ξ および全水深 H は静水時水深を h として 以下のように表される.

$$\zeta^{c} = \zeta + \hat{\zeta} ; \quad H = h + \zeta^{c}$$
(3)

式 (2) 中の B: 砕波による波から流れへの運動量輸送項, J: VF項, D: 底面摩擦項であり, それぞれ

$$\mathbf{B} = \frac{\varepsilon_b \mathbf{k}}{H\sigma} \tag{4}$$

$$\mathbf{J} = -\hat{\mathbf{z}} \times \frac{1}{H} \mathbf{U}^{st} \boldsymbol{\chi}$$
 (5)

$$\mathbf{D} = \mu \frac{\mathbf{u}}{H} \tag{6}$$

と定義される.ここで、 $\hat{\mathbf{z}}$:鉛直上向きの単位ベクトル、 χ :**u** による鉛直相対渦度(1/s), ϵ_{b} :砕波による kinematicな波のエネルギー消散率(\mathbf{m}^{3} /s³), **k**:波数ベク トル、 σ :波の周波数、 ρ :流体の密度、 μ :線形摩擦係 数(\mathbf{m} /s)である. **U**⁴と $\hat{\boldsymbol{\xi}}$ は、波形勾配ak($k=\mathbf{k}$)に関 する弱非線形近似のもとに以下のように表される.

$$\mathbf{U}^{st} = \frac{a^2 \sigma \mathbf{k}}{2k \tanh kH} = A \mathbf{k} \quad ; \quad \hat{\boldsymbol{\zeta}} = -\frac{a^2 k}{2 \sinh 2kH} \tag{7}$$

A:波のアクション(波作用量)は次式で表される.

$$A = \frac{E}{\sigma} = \frac{1}{2\sigma} \rho g a^2 = \frac{1}{8\sigma} \rho g H_{ms}^2$$
(8)

ここで、 $E: 波のエネルギー, a: 波の振幅, H_ms: RMS$ 波高(=2a)である. なお、本モデルは水深平均され た平面2次元場で定式化されているが、3次元場に拡張す ることも可能である(例えば、内山・McWilliams²¹⁾).

(2) 波浪変形モデル

平面波浪場の方程式は、WKB近似に基づくray方程式 に従うものとする. すなわち,

$$\frac{\partial A}{\partial t} + \nabla \cdot \left(A \mathbf{c}_{g} \right) = -\frac{\rho \varepsilon_{b}}{\sigma}$$
⁽⁹⁾

$$\frac{\partial \mathbf{k}}{\partial t} + \mathbf{c}_{g} \cdot \nabla \mathbf{k} = -\left(\tilde{\mathbf{k}} \cdot \nabla\right) \tilde{\mathbf{u}} - \frac{k\sigma}{\sinh 2kH} \nabla H \qquad (10)$$

 $\sigma^2 = gk \tanh kH \; ; \; \omega = \mathbf{u} \cdot \mathbf{k} + \sigma \tag{11}$

上から、アクション保存式、波数保存式、分散関係式を 表す.式(10)では[~](ティルダ)を付した変数同士の演 算を先に行うものとする. ω は流れによるDopplerシフト を受けた波の周波数であり、これに対応する群速度ベク トル c_{g} は、Euler流速uを用いて

$$\mathbf{c}_{\mathbf{g}} = \mathbf{u} + \frac{\sigma}{2k^2} \left(1 + \frac{2kH}{\sinh 2kH} \right) \mathbf{k}$$
(12)

となる.また、 ϵ_b は位相平均流運動方程式(2)中の砕波項 **B**にも現れる砕波によるkinematicなエネルギー消散率で あり、Rayleigh波高分布を仮定した狭帯スペクトル波に 対するChurch & Thornton²⁰による次式を用いる.

$$\varepsilon_{b} = g \frac{3\sqrt{\pi}}{16} \frac{B_{b} f_{p}}{H} H_{mns}^{3} \left[1 + \tanh\left\{8\left(\frac{H_{mns}}{\gamma_{b}H} - 1\right)\right\} \right]$$
(13)
$$\cdot \left[1 - \left\{1 + \left(\frac{H_{mns}}{\gamma_{b}H}\right)^{2}\right\}^{-\frac{5}{2}}\right]$$

 f_p : ピーク周波数 (= $\sigma/2\pi$) である.式(13)中の B_b およ び p_b は地形や沖波条件に依存するモデルパラメータであ り、本研究ではそれぞれYSO3¹⁰を参考に、 $B_b = 1.3$ 、 $p_b =$ 0.38とした.式(13)は、現地観測値を用いて構築された 半経験的モデルであり、ray方程式による波浪変形計算 では比較的広く用いられている.また、 ϵ_b は波浪モデル 中では砕波によるエネルギー消散率と捉えられるが、海 浜流モデルでは砕波により波浪場の運動量が流れ場へ輸 送される効果として認識される.今後、本研究中では ϵ_b を砕波輸送量と呼ぶこととする.

(3) 海浜地形

本研究では、離岸流の発生位置を固定するために、米 国North Carolina州Duck海岸を模した、江線からの距離 x_c = 80 mに頂部を有するバー型海浜に正弦波状の沿岸方向 地形擾乱を付与したモデル地形¹⁰を用いた(図-3).岸 沖方向を *x* 軸,沿岸方向を *y* 軸と定義すると,モデル地 形 *h*(*x*, *y*)は次式で表される.

$$h_{0}(x) = \left(a_{1} - \frac{a_{1}}{\gamma_{1}}\right) \tanh\left(\frac{b_{1}x}{a_{1}}\right) + \frac{b_{1}x}{\gamma_{1}} - a_{2}\exp\left[-5\left(\frac{x - x_{c}}{x_{c}}\right)^{2}\right]$$
(14)
$$h(x, y) = h_{0}(x) + \varepsilon h_{0}(x)\cos\left(\frac{2\pi\lambda}{\lambda}\right)\exp\left[-5\left(\frac{x - x_{c}}{x_{c}}\right)^{2}\right]$$
(15)

ここに、 $a_1=2.97$ m, $a_2=1.5$ m, $b_1=\tan\beta_1$, $\gamma_1=\tan\beta_1/\tan\beta_2$, $\beta_1=0.0075$, $\beta_2=0.0064$, ε : リップチャンネル深さを表す 無次元パラメータ, λ : 地形擾乱の沿岸方向波長(リッ プチャンネル間隔)である.式(14)は沿岸方向に一様な 地形 $h_0(x)$ を示しており、これに式(15)で表される正弦波 状の地形擾乱を付与することによって図-3 のようなリ ップチャンネル地形を表現する.なお、本研究では、こ のモデル地形を「YS03 地形」と呼ぶこととする.

3. 数値実験の概要

(1) 計算条件

離岸流場から遷移過程を経て沿岸流場へと至る海浜流 系を統一的に解析するため、図-3に示した地形に対して、 他の諸量や境界条件等は変えずに、沖波入射角6 を0°か ら10°まで変化させ、角度毎に静水条件からスタートす る数値実験を行う.ただし、波向角 θ はx軸から時計回 りの方向に正と定義する.モデル地形は,x方向500m, y 方向768 mの長方形領域に対して水平解像度4 mの直交 正方格子で表現する.沖側境界において入射波高 Hms = 1 m, 周期 T = 10 s, 入射角 θ = 0~10°の入射波をclamp条 件として与える.計算は静水状態から開始し,漂砂や地 形変化は無視した固定床計算を行い、波によって離岸流 を発生させ、実時間で10時間の積分を行う.線形摩擦係 数は μ =0.002 m/s, リップチャンネル無次元深さは ε =0.1, その沿岸方向波長は $\lambda = 256 m$ に固定する.沿岸方向には 周期境界条件、沖境界では流速の法線成分にはアンチス トークス条件 $(u = -U^{S}|H)$, 接線成分と水位にはFlather 型放射条件,岸境界では不透過条件を課す.数値計算で は、まず、静水状態での定常波浪場を求め、それを用い て非定常海浜流計算を行う.海浜流計算の最初の10分間 は助走期間とし、0→1に変化する tanh 関数を用いて滑 らかに波浪の影響を与える. CEWなしのケースでは定 常波浪場を一定外力として与え, CEWありのケースで は各計算ステップで波浪変形計算と海浜流計算を逐次行 うことにより、波-流れ相互作用を双方向的に考慮する. また、本研究では、ある任意の変数 f に対して、リッ プチャンネルー波長 λ に対する沿岸方向空間平均値を

図-4 リップチャンネル上 (y=128m) における Lagrange 流速の岸沖成分 u^L の時間平均値の岸沖分布. 左図:本計算結果,右図: YS03 による計算結果. ε =0.1, λ =256m, θ =0°. μ は波高に応じて 0.0013~0.0064 m/s の範囲に設定した (YS03¹⁰ 参照).

 $\langle f \rangle$,流れ場がほぼ定常状態に達している時間帯 T = 240~300分の60分間の時間平均値を \overline{f} と定義する.つまり,

$$\langle f \rangle = \frac{1}{\lambda} \int_{\lambda} f \, dy$$
 (16)

$$\overline{f} = \frac{1}{T} \int_{T} f \, dT \tag{17}$$

また,運動方程式(2)中の移流項は,時間平均成分による(平均)移流項 A と,変動成分の相関によるレイノ ルズ応力項 R に分け,さらに圧力勾配項を P,非定常項 を T と略記することにより,位相平均運動方程式(2)を 以下のように簡略表示する.

$$\mathbf{B} - \mathbf{D} + \mathbf{J} - \mathbf{A} - \mathbf{R} - \mathbf{P} = \mathbf{T}$$
(18)

ここで、レイノルズ応力項Rは次式で評価する.

$$\mathbf{R} = \mathbf{u} \cdot \nabla \mathbf{u} - \mathbf{u} \cdot \nabla \mathbf{u} \tag{19}$$

式(18)中の各項はベクトル量であり、以降では、各項の 岸沖成分・沿岸成分をそれぞれ下付き添字x, yを用いて、 例えば、 $\mathbf{A} = (A_x, A_y)$ のように表す.

(2) モデルの妥当性

モデルの妥当性を確認するため、YSO3¹⁰による CEW を考慮した場合の離岸流場に関する再現実験を行った. ここでは、リップチャンネル無次元深さ ϵ ,沿岸方向波 長 λ ,および入射波高 H_0 ,線形摩擦係数 μ の4つのうち の1つのみを変更した計 18 通りの感度実験を実施し、 YSO3¹⁰の結果と比較した.それ以外の計算条件は前節の とおりである.ここでは一例として、入射波高 H_0 を変 更した場合のリップチャンネル中心軸上のy = 128 m断 面における、計算開始後 2 時間から 10 時間までの時間 平均岸沖 Lagrange 流速の岸沖分布を図-4 左に示す.本 研究における計算結果より、 $H_0 \ge 0.8$ mではいずれも砕 波点よりやや沖側のx = 130 m付近に岸沖流速の最大値 が現れていることが分かる.また、 $0.8 < H_0 \le 1.2 \text{ m}$ で は波高の増加に伴って最大流速が徐々に増加するが、 H_0 $\ge 1.6 \text{ m}$ ではむしろ最大流速は減少している.このよう な波高の変化に伴う最大流速の増減と、最大流速が出現 する *x* 座標の変化などの定性的な特徴は YSO3¹⁰による 計算結果(図-4 右)と良好に一致しており、本研究で 用いるモデルの妥当性が十分であることが示されている. また、他のパラメータを変更したケースにおいても YSO3¹⁰とほぼ同様な結果が得られたことを確認している.

なお、YSO3¹⁰による結果(図-4 右)は Lagrange 流速 u^{L} (= $u + U^{e}/H$)を未知変量とした radiation stress 型海浜 流モデルによるものであり、本研究で用いた Euler 流速 u に基づく VF 型モデルとは基礎方程式や思想がやや異 なる。例えば、波浪モデル中の CEW、底面摩擦応力、 移流項の風上差分から生じる人工粘性などを $u^{L} \ge u$ の どちらで評価するのかという差異があるが、著者らはい ずれも u を用いるべきであると考える。しかし、1.(1) で述べたように、波浪モデル中で VF の効果を考慮した 場合には radiation stress モデルと VF 型モデルは理論的に ほぼ等価となることから¹⁵、同一地形における両モデル の結果を Lagrange 流速を用いて比較する際に特段の問題 はないものと考えられる。

4. 沖波入射角の変化による海浜流場, 波浪場お よび運動量の変化について

(1) 入射角の変化に伴う平均海浜流場の変化

沖波入射角 θ を0°から10°まで1°刻みで変化させること により、卓越する海浜流は離岸流から沿岸流へと遷移し ていく、各ケース($\theta = 0^\circ$, 1°, 3°, 10°のみを表示)に おける流速絶対値の時間平均値の空間分布を見ると(図 -5)、 $\theta = 0°では離岸流が支配的な流れ場が形成される$

図-5 Euler流速の絶対値 \boxed{u} (カラー) および 流速ベクトル.上段より,沖波入射角 度 $\theta = 0^{\circ}, 1^{\circ}, 3^{\circ}, 10^{\circ}$ に対する結果. (a) CEWを考慮したケース, (b) CEWを考慮 しないケースである.黄線はリップチ ャンネル位置,赤線はバーの頂部をそ れぞれ示しており, x=0 (m) が汀線に相 当する(他図面も同様).

図-6 バー頂部 (x=80m) におけるEuler流速の沿岸成分vの時系列 (θ = 10°). 凡例中の「trough」はリッ プチャンネルのトラフ部 (y=128m), 「crest」は リップチャンネルのクレスト部 (y=256m) におけ る時系列, 「CEW」はCEWありのケース, 「WEC」はCEWなしのケースにおける結果を示し ている.

が、CEWを考慮することによってその強度や沖への広 がりが大幅に抑制されていることが分かる(図-1も参照 のこと).入射角の増加に伴って離岸流頭は徐々に沿 岸正方向(y⁺方向)に傾き、リップチャンネルを挟んで

図-7 各沖波入射角に対する (a) k_y , (b) ΔH_{rms} , (c) $\Delta \overline{\epsilon_b}$ の空間分布. 上段より, 沖波入射角度 $\theta = 0^\circ$, 1°, 3°, 10°に対する結果. (a) の左列はCEWを考慮したケース, 右列はCEWを考慮しないケースである. 黄線はリップチャンネル位置, 赤線はバーの頂部位置を表す.

非対称なセル循環の形成を経て($\theta = 1^{\circ}$), $\theta \ge 3^{\circ}$ では岸 沖方向の流れが卓越する離岸流的な性質は著しく低減す るようになり,沿岸流が支配的な状況へと遷移している. これらの結果は,Weir *et al.*¹⁰の結果と整合している. さ らに入射角 θ を大きくした $\theta = 10^{\circ}$ のケースでは非定常な 沿岸流場が形成され(図-6),時間平均流速分布からは $\theta \le 3^{\circ}$ で確認される沿岸方向地形擾乱に対応する流速パ ターンはほぼ見られなくなる(図-5).また,離岸流が 支配的な流れ場と比べて,入射角 θ の増加とともにCEW の効果がかなり弱まることが分かる.これは,沿岸流場 における平均流に対しては,波数ベクトルkを変化させ るEuler流速 uの沿岸方向変化が小さいため,CEWの効果 が相対的に小さくなることによるものと考えられる.こ れについては次節以降で詳しく検討する.

(2) 入射角の変化に伴う波浪場の変化

図-7は入射角 θ を変化させたときの波数ベクトル沿岸 成分 k_y (図-7(a)), CEWによる波高及び砕波輸送量の 変化量である ΔH_{ms} および $\Delta \epsilon_b$ (図-7(b), (c))の時間平 均値の空間分布である.ここで, ΔH_{ms} および $\Delta \epsilon_b$ はそれ ぞれ次のように定義する.

$$\Delta H_{rms} = H_{rms}^{CEW} - H_{rms}^{WEC} \tag{20}$$

$$\Delta \varepsilon_{h} = \varepsilon_{h}^{CEW} - \varepsilon_{h}^{WEC} \tag{21}$$

図-8 リップチャンネル上 (y = 128 m) における時間平均 された運動量岸沖成分の時間平均値 (m/s²)の岸沖 分布 (θ=10°, CEWを考慮したケース).

ただし、式中の右肩添字のCEWはCEWありのケース、 WECはWECのみ (CEWなし) のケースをそれぞれ表し ている(以下同様). 入射角 θ=0° および 1°のケースで は、CEWに伴う波浪変形によって<u>k</u>の空間分布に大き な差異が生じており、CEWなしのケースではリップチ ャンネルから沿岸方向に離れるような波向きであったも のが、CEWを考慮することによってリップチャンネル へ向かって収斂するような波向きに変化している(図-7(a)). これは、CEWの効果の1つである流れによる波 の屈折効果、中でも波数の主方向成分(k)が交差成分 (k)に変換される効果によって引き起こされたもので ある(内山・甲斐田¹⁷).また、CEWを考慮すること により, θ=0°, 1°の場合に離岸流の流路上において顕 著な波高増加が発生しており(図-7(b)),これに伴っ て砕波輸送量も増大する(図-7(c)).入射角 θ=3°の場 合は、CEWの有無による k. の空間的差異は著しく減少 し、さらに入射角を増加させて $\theta = 10^{\circ}$ とすると、ほとん ど差を認めることができなくなる.また、 $\theta \ge 3^{\circ}$ では、 波高・砕波輸送量の2つの変数に対しても、 CEWの効果 がほぼ失われることが分かる.

(3) 入射角の変化に伴う運動量岸沖成分の変化

入射角の変化に伴うCEWの変化によって波浪変形が 生じると、WECが改変されて位相平均流場が変化する (図-2).このような波浪場・流れ場の双方向的な相互 作用による変化に伴い、運動量の収支構造もまた入射角 変化の影響を受けて変調することが予想される.沿岸方 向に一様な地形を有する海浜に直入射波が入射する場合 は、岸沖方向の運動量収支に対しては砕波項と圧力勾配 項のバランスが卓越することが知られている(Bowen *et al.*⁴, Uchiyama *et al.*¹³).内山・甲斐田¹⁷は、本研究で用 いたような沿岸方向に凹凸を有するバー型海浜上に形成 される離岸流場においても、岸沖方向の運動量は砕波項 と圧力勾配項のバランスに強く支配されていることを示

図-9 ΔB_xの空間分布 (m/s²). (a) θ = 0°, (b) θ = 1°, (c) θ = 3°, '(d) θ = 10°の場合. 黄線はリップチャンネルの位置,赤線はバーの頂部をそれぞれ示している. ベクトルはCEWありのケースにおけるEuler流速 u.

した. 図-8は入射角 θ = 10°, CEWありのケースにおける リップチャンネル上での運動量岸沖成分の時間平均値の 岸沖分布である. 斜め入射であっても,直入射時^{4,13,17} と同様に砕波項と圧力勾配項が岸沖運動量収支を支配し ていることが示されている. また,図には示さないが, θ = 10°, CEWなしのケースにおいても同様の傾向が見ら れることを確認している. 図-8より,砕波項 B_x は波浪場 の影響を受ける唯一の外力項として岸沖方向の運動量収 支を圧倒的に支配して,圧力勾配項とバランスするが, 他の項の寄与は極めて小さいことが分かる. また, $\overline{B_x}$ の値は全領域で負であることから,離岸流などの砕波帯 周辺で生じる流れを常に岸近くに留めようとする作用を 有しているものと理解される.

次に、 CEWによる B_x の変化について検討するため、 ΔB_x を次式のように定義する.

$$\Delta B_x = B_x^{CEW} - B_x^{WEC} \tag{22}$$

上式から求められる ΔB_x の時間平均値 $\overline{\Delta B_x}$ の空間分布 を図-9に示す.入射角 $\theta = 0^\circ$, 1° ではリップチャンネル 上のバーよりもやや沖側領域において $\overline{\Delta B_x}$ に強い負の ピークが現れる. B_x は全領域で負であるため(図-8), $\Delta B_x < 0$ である領域ではCEWによって砕波項岸向き成分 B_x が強化されることを示している.入射角 θ を 3°, 10° と増大させるにつれて負のピークは失われ,CEWの有 無による空間的な違いが低減していくことが分かる.

内山・甲斐田^{ID}は、直入射時($\theta=0^{\circ}$)における岸向き B_x のCEWによる強化原因を明らかにするため、砕波項 B_x

図-10 リップチャンネル上における <u>入B</u>, (m/s²) の岸沖分
 布.各量の詳細については本文を参照.

および砕波輸送量 ϵ_b に対する感度実験を行った.感度実 験では、 B_x 、 ϵ_b を構成する変量のうち、CEWによって変 化する可能性がある要素のうちの一要素のみにCEWな しの値を用い、残りの要素にはCEWありの値を用いて B_x 、 ϵ_b を算定し、各要素の寄与を評価した.例えば、 B_x は式 (4)から、波数ベクトル岸沖成分 k_x 、全水深H、周波数 σ 、砕 波輸送量 ϵ_b の4要素から評価されるが、全ての要素に CEWありのケースのものを用いて求めた B_x と、全水深 HのみCEWなしの値を用いた B_x との差を求め、CEWな しの値に置き換えた要素(例えばここではH)を括弧内 に示して ΔB_x (H)のように表示した.すなわち、

$$\Delta B_x(H) = \frac{\varepsilon_b k_x}{H\sigma} - \frac{\varepsilon_b k_x}{H'\sigma}$$
(23)

ここで、プライムを付した要素(つまり*H*)は、CEW なしの値を意味する. 同様の操作を残り3要素(k_x , σ , ϵ_b)に対しても同様に行い、リップチャンネル上での岸 沖分布を求めた結果を図-10に示す. x > 50 mの領域では

 $\overline{\Delta B_x}$ と $\overline{\Delta B_x(\epsilon_b)}$ がほぼ重なっており、 B_x の構成要素のうち、 ϵ_b を除いた部分($k_x/H\sigma$)が、CEWあり・なしのケースにおいてほぼ等しいということが示されている.したがって、岸向き B_x の強化にはCEWによる砕波輸送量 ϵ_b の改変効果が最も強く関与していることが分かる.

そこで次に、CEWによる B_x の改変効果を支配する ϵ_b について同様の感度実験を行った(図-11).まず、図-10において $\overline{\Delta B_x}$ に大きな空間変化が見られた x = 120 m 付近では、 $\overline{\Delta \epsilon_b}$ にも顕著な正の変化が生じており、 CEWによって ϵ_b が著しく増加することが分かる.図-11 から、バー沖側のx > 100 mでは、波高 H_{ms} の寄与が最も 大きいことが示されている.CEWによるリップチャン ネル上における波高変化 $\overline{\Delta H_{ms}}$ を見ると(図-12)、 CEWによって4 cm程度の波高増加が生じている.これは、 CEWに伴う流れによる波の屈折効果によって波向き(k) がリップチャンネルに収束するように屈折し(図-7(a))、式(9)からリップチャンネル上で波のアクション Aが増加することで引き起こされたものである.

以上のことから、CEWのうち流れによる波の屈折効 果によって波向きが変化し、その変化はリップチャンネ ル上における波高を増加させ、波高増加に伴う砕波輸送 量*ε*, ひいては岸向き*B*_xの強化を引き起こすことが分かっ た. このようなCEWによる*B*_xの強化は、離岸流の沖へ の発達を抑制する重要なメカニズムとなっている.

続いて、入射角を $\theta > 0^{\circ}$ として離岸流場から沿岸流場 へ遷移させた場合について考察する.入射角 $\theta = 1^{\circ}$ のと きは岸沖方向の流れが卓越する離岸流的な性質が強く、 CEWの有無による流況の差が明確に現れている(図-5, 2段目).したがって直入射の場合¹⁷⁾のみならず、遷移 過程(斜め入射)においてもCEWの効果は存在する. θ = 1°の場合も、CEWを考慮すると流れによる波の屈折効 果によりリップチャンネルへ収斂する波向きに変化し、

図-13 運動量沿岸成分の時間平均値の空間分布. (a) 砕波項 $\overline{B_y}$, (b) 圧力勾配項 $_{-\overline{P_y}}$, (c) 移流項 $_{-\overline{A_y}}$, (d) レイノルズ応力項 $_{-\overline{R_y}}$, (e) VF項 $\overline{J_y}$, (f) 底面摩擦項 $_{-\overline{D_y}}$ であり、赤線はバー頂部、黄線はリップチャンネルをそれぞれ示している.

これに伴って $\overline{\Delta H}_{ms}$, $\overline{\Delta \varepsilon}_{b}$ も離岸流の流路上において増加する(図-7 (b), (c)). これに伴い, リップチャンネル上に直入射時と変わらない程度の負の $\overline{\Delta B_{x}}$ が現れる(図-9). したがって, $\theta = 1^{\circ}$ では, 直入射時と同様の機構によりCEWの効果が強く現れ, 離岸流の沖への発達が抑制されていることが分かる.

沿岸流が支配的となる $\theta \ge 3^\circ$ では、 $\theta < 3^\circ$ においてリッ プチャンネル上に見られた負の $\overline{AB_x}$ がほぼ消滅し(図-9 (c),(d))、岸沖方向の運動量はCEWの効果をほとんど 受けなくなる.これは、入射角が大きくなることによっ て CEWによる波浪変形効果が弱まり(図-7)、CEWを 考慮することで生じる流れによる波の屈折効果による波 向きの変化に端を発した岸向き B_x の強化機構が消滅して いくことを表している.

図-14 リップチャンネル半周期間(0≤y≤128m)で空間平均・時間平均操作を行った運動量各項沿岸成分の岸沖分布.ただし,直入射時・CEW ありのケースに対するもの.

図-15 リップチャンネルー周期で空間平均,時間平均操作を行った運動量各項の沿岸成分の岸沖分布. (a) 砕波項 $\langle \overline{B_y} \rangle$, (b) 圧力勾配項 $_{-}\langle \overline{P_y} \rangle$, (c)移流項 $_{-}\langle \overline{A_y} \rangle$, (d)底面摩擦項 $_{-}\langle \overline{D_y} \rangle$, (e) レイノルズ応力項 $_{-}\langle \overline{A_y} \rangle$, (f) VF項 $\langle \overline{J_y} \rangle$. $\theta = 10^{\circ}$.

(4) 入射角の変化に伴う運動量沿岸成分の変化

a) 離岸流が支配的な流れ場における運動量沿岸成分

図-13 は、CEW あり・CEW なしの 2 ケースの運動量 各項沿岸成分の時間平均値の空間分布である. 直入射時 の準定常離岸流場におけるバー (*x* = *x*_c = 80 m) より沖側 の領域では、特に θ < 3°において、CEW なしの運動量各 項が CEW ありの場合よりも沖方向へ拡大している. 図 -14 は、任意の変数 *f* に対して次式の通り定義した時空 間平均操作を施した運動量各項沿岸成分の岸沖分布であ る. なお、空間平均操作はリップチャンネル半周期間 (*W*2) に対して行うこととする.

$$\left\langle \left\langle \overline{f} \right\rangle \right\rangle = \frac{1}{\lambda T / 2} \int_{\lambda/2} \int_{T} f \, dt \, dy$$
 (24)

同図より、CEW の有無によらず沿岸流速 v が弱いため に底面摩擦項- $\overline{D_y}$ が小さく、バーより沖側の領域 (x > 80m) では唯一の外力項である砕波項 $\overline{B_y}$ に対して圧力 勾配項- $\overline{P_y}$ 、(平均) 移流項- $\overline{A_y}$ 、VF 項 $\overline{J_y}$ の和が概ね バランスしていることが分かる.しかしながら、水深の 浅い汀線近傍領域では- $\overline{D_y}$ の寄与が相対的に大きくな る傾向にある.また、ほぼ定常な離岸流場を形成するた め、レイノルズ応力項- $\overline{R_y}$ は極めて小さい.ここで注 目している非一様な沿岸方向地形上の海浜流系と、沿岸 方向に一様な地形における沿岸流場¹³ との最大の差異 は、圧力勾配項- $\overline{P_y}$ が有意な値をもつ点にあり、特に離 岸流場 ($\theta < 3^\circ$) では CEW の有無によって運動量沿岸成 分の分配が大きく変化していること¹⁷⁾ が確認される.

また, $\theta = 0^{\circ}$ に対して CEW を考慮すると離岸流によっ て波向き変化が生じ、CEW なしの場合と比較して砕波 項 \overline{B} および圧力勾配項 $-\overline{P}$ の符号が反転し、離岸流路 から流れを発散させるような構造が形成される ¹⁷. これ は、CEW による離岸流抑制メカニズムのもう1つの要 因となっている.また、離岸流場から沿岸流場への遷移 過程 ($\theta = 1^{\circ}$) では、砕波項 \overline{B} , は運動方程式中の唯一の 外力項として CEW による波浪変形の影響(図-7)を強 く受けており、CEW の有無によりリップチャンネルを 挟んで正負が反転する(図-13 (a))など,直入射(θ= 0°)とほぼ同様な力学バランスが成立している.しかし ながら, CEW なしのケースでは, CEW ありと比較して $-\overline{P_{y}}$, $-\overline{A_{y}}$, $\overline{J_{y}}$ に y = 128 m についての沿岸方向の非対 称性が強く現れ(図-13),バー沖側へ伸長した離岸流 が y⁺方向に輸送される状況(図-5)に対応していること が分かる. また, CEW なしの $-\overline{P}$ にはバーのやや沖側 において θ=0° で見られた離岸流を収束させる構造が強 く残っており(図-13 (b)),離岸流の沖への発達を助長 している様子が見て取れる.

b) 沿岸流が支配的な流れ場における運動量沿岸成分

沿岸流場が卓越し始める $\theta = 3^{\circ}$ のケースでは,直入射 時と比べて CEW による波浪変形効果が低減し(図-7), CEW による砕波項岸沖成分 $\overline{B_x}$ の変化も大幅に低減する (図-9 (c)).砕波項沿岸成分 $\overline{B_y}$ は CEW の有無に関係 なく,波向き角の増大に対応してバー沖側の領域におい てy⁺成分が強くなる(図-13 (a)).したがって,入射角

図-16 非定常沿岸流場 (θ = 10°) における,時空間平均された運動量各項沿岸成分の岸沖分布 (m/s²). (a) CEWあり, (b) CEWなし.

の増大に伴う $\overline{B_y}$ の変化が地形効果による $\overline{B_y}$ の変化を 上回ることにより、沿岸流が支配的な状況へと遷移して いくものと理解される.深い入射角によって強化された $\overline{B_y}$ によってバー周辺における沿岸流速 \overline{v} が増大するた め(図-7),そこでの底面摩擦項 $\overline{D_y}$ も強化される(図 -13 (f)).一方、CEW の有無による $-\overline{P_y}$ 、 $-\overline{A_y}$ 、 $\overline{J_y}$ の 差異は大きく縮小し、直入射時に顕著であった CEW に よる運動量バランスの改変効果は $\theta = 3^{\circ}$ で概ね見られな くなる.

さらに入射角を大きくすると ($\theta = 10^{\circ}$) 非定常沿岸流 場が形成され,沿岸流のシア不安定によって shear wave が発生し¹³,レイノルズ応力項 $-\overline{R_y}$ が有意な大きさを持 つようになる (図-13 (d)).しかしながら,CEW の有 無による平均運動量バランスの差は極めて小さい.

次に,任意の変数 f に対する時空間平均操作を以下の ように定義する.ただし,空間平均操作はリップチャン ネルー波長λに対して行うこととする.

$$\left\langle \overline{f} \right\rangle = \frac{1}{\lambda T} \int_{\lambda} \int_{T} f \, dt \, dy$$
 (25)

上式により求められる,入射角 θ = 10°の場合の運動量沿 岸成分の時空間平均構造(図-15)を見ても,CEW の有 無による顕著な差は認められない.レイノルズ応力項と 同様に, shear wave の発生によって VF 項から生じる変 動 VF 項($u^{tr}\chi'$; u^{tr} :水深平均 Stokes drift 速度の変動成 分, χ' :相対渦度の変動成分)は,CEW ありの場合に のみ現れる量であるが、その値は非常に小さく、運動量 収支に及ぼす影響も無視できる程度のものである.非定 常沿岸流場($\theta = 10^{\circ}$)における沿岸方向の時空間平均運 動量収支は(図-16)、CEWの有無に関わらず、バーよ り沖側の領域では砕波項 $\langle \overline{B_y} \rangle$ 、底面摩擦項 $-\langle \overline{D_y} \rangle$ およ びレイノルズ応力項 $-\langle \overline{R_y} \rangle$ のバランスと、移流項 $-\langle \overline{A_y} \rangle$ 、VF項 $\langle \overline{J_y} \rangle$ のサブバランスが概ね成立している. 沿岸一様地形海浜上における shear wave について検討し たUchiyama *et al.*¹³の結果とは異なり、この沿岸非一様地 形上に発達する非定常沿岸流場では、地形の効果によっ て圧力勾配項 $-\langle \overline{P_y} \rangle$ が小さいながらもある程度の値を持 っており、運動量収支において補完的な役割を果たして いる点が特徴的である.

(5) 非定常海浜流場における乱流統計量に対するCEWの効果

本研究で得られた非定常海浜流場におけるCEWの効 果を検討するために,次式で表される乱流運動エネルギ ー (TKE)を沿岸方向に空間平均した 〈*TKE*〉の岸沖分 布を評価する (図-17).

$$TKE = \frac{1}{2} \left(\overline{u'^2 + v'^2} \right)$$
(26)

ただし、プライムを付した変数は時間平均値からの差を 表す. 直入射の場合は、CEWなしの場合にのみバー沖 側および汀線近傍に乱れが生じている. これは、ジェッ ト不安定による離岸流頭部の周期的な揺動等を反映した ものであり、CEWを考慮した場合は定常離岸流が形成 されて、 $\langle TKE \rangle$ はゼロになる¹⁷⁾. $\theta = 1^{\circ}$ の場合も直入射 と同様に、CEWありでは乱れは生じず、CEWなしでは 〈TKE〉が値を持つが、その範囲は岸近傍に集中してい る. $\theta = 2^{\circ}$, 3°ではCEWの有無に関わらず定常状態とな って乱れが生じなかったため(表-1参照),図から省い ている. $\theta \ge 4^{\circ}$ では**CEW**の有無に関係なく乱れが生じて いるが,入射角の大きさによらず,概ね x > 50 mの領域 では常にCEWなしのケースの方が〈TKE〉が大きく, CEWによってバー周辺の乱流エネルギーが抑制される ことが示されている.入射角が浅いケース (θ ≤ 3°) と は異なり、 $\theta \ge 4^{\circ}$ で生じるTKEは沿岸流のシア不安定 (shear wave) によるものであると考えられる.一方, 特に $\theta \ge 5^{\circ}$ では汀線近傍 (x < 50 m) における (TKE) が増 大しているが、この領域では逆にCEWを考慮したほう がより大きな値となっている.以上の結果をさらに定量 化するため, x = 0 m~50 mの「岸側領域」, x = 50 m~ 150 mの(バー周辺)「沖側領域」2つの区間において、 ⟨TKE⟩の岸沖方向空間平均値を計算した(表-1). θ = 2°,3°では定常海浜流場が形成されており、これを境に して $\theta < 2^{\circ}$ では離岸流のジェト不安定, $\theta > 3^{\circ}$ ではshear

図-17 非定常海浜流場での(TKE)の岸沖分布(単位は m²s²) . (a) θ=0°, 1°, 4°, 5°, (b) θ=10° に対する結果. 凡例中の 「CEW」は CEW ありを, 「WEC」は CEW なしのケースを表す(図−18, 表-1 についても同様).

図-18 各ケースにおける岸沖流速 *u*,沿岸流速 *v* の標準偏差 *u^{ms}*, *v^{ms}*の空間平均値, (a) 〈*u^{ms}*〉および (b) 〈*v^{ms}*〉の岸沖分布 (単位は m/s) . いずれもθ=0°, 1°, 4°, 5°, 10° に対する結果.

表-1 入	、射角ごとの/TKF\	(図-17)	をさらに岸側・	沖側領域におい	ヽて岸沖方向に空間平均した	.値(単位:m ² /s ²)
-------	-------------	--------	---------	---------	---------------	--

平均 TKE		0°	1°	2°	3°	4°	5°	6°	10°
岸側領域	CEW	0	0	0	0	0.0006	0.0021	0.0039	0.0115
	WEC	0.0012	0.0014	0	0	0.0008	0.0018	0.0026	0.0045
沖側領域	CEW	0	0	0	0	0.0008	0.0030	0.0047	0.0197
	WEC	0.0005	0.0006	0	0	0.0022	0.0050	0.0063	0.0232

waveへと遷移している. また, shear wave発生時の沖側 領域におけるCEWによるTKEの抑制,岸側領域におけ るCEWによる乱れの増大が明示されている.

この原因について考察するため、Euler流速岸沖成分 uおよび沿岸成分 v の標準偏差 u^{ms} , v^{ms} を沿岸方向に空間 平均した $\langle u^{ms} \rangle$ および $\langle v^{ms} \rangle$ の岸沖分布を求めた(図-18). $\langle TKE \rangle$ の傾向と同様に, 斜め入射時 ($\theta \ge 4^{\circ}$) の バー周辺から沖側領域 (x > 50 m) では, CEWによって $\langle u^{ms} \rangle \ge \langle v^{ms} \rangle$ はいずれも抑制されていることが分かる. しかしながら, CEWの有無による変動流速の抑制効果 の度合いは, $\langle v^{ms} \rangle$ よりも岸沖成分 $\langle u^{ms} \rangle$ のほうが明ら かに大きい. このことは, shear waveに伴う渦の通過に よって生じる岸沖Euler流速の沖向き偏差に対してCEW が作用し、波数変化をきっかけとする一連のメカニズム によって渦塊の沖への噴出が抑制されることを示してい る.このCEWによるshear waveの抑制機構は、沿岸方向 に一様な海浜地形上で行われたUchiyama et al.¹³の解析結 果と整合しており、本研究で用いたリップチャンネル地 形海浜においても、非定常沿岸流の平均構造にはほとん ど現れなかったCEWの効果が乱流成分に対して強く現 れることが明らかとなった.

5. おわりに

本研究では、波-流れ相互作用のうち、特に流れから 波へのフィードバック機構(CEW)が海浜流系の力学 構造に与える影響に関する詳細な数値解析を行なった. 用いた解析モデルは、ROMS¹⁹⁾をベースにしたVF型Euler 位相平均平面二次元水理モデルと、WKB近似に基づく ray方程式波浪モデルをタイトにカップリングさせたシ ステム^{13, 17)}である.米国Duck海岸を模した、リップチャ ンネル(RC)を有するYS03地形¹⁰⁾をtest bedとして用い、 波向きのみを0°(直入射)から10°まで変えた定常スペ クトルピーク波を作用させ、離岸流~遷移過程~沿岸流

(shear waveを含む)という様々なregimeの海浜流系を包括的に表現し,解析した.それぞれの結果に対して, CEWの有無によって変化する流況や波浪場の可視化, 運動量収支解析,乱流統計量解析等を実施し,以下のような重要な知見を得た.

まず,離岸流が発達する直入射時は、CEWを考慮す ることにより,流れによる波の屈折効果によって波向き がRCへ収斂する向きへと変化する.この波向きの変化 は、岸沖方向には、RC上でのアクション保存による波 高の増加に伴って砕波輸送量および岸向き運動量成分中 の砕波項を強化し、沖向き流れを強く抑制する.一方、 沿岸方向には外力項である砕波項の改変を通じて圧力勾 配項を変化させ、流れをRCから発散させるような作用 を及ぼす.主にこの2つの効果により、CEWによって離 岸流の発達が抑制される.これらの傾向は沖波入射角が 浅い斜め入射の場合 ($\theta < 3^{\circ}$)にも同様に現れ、離岸流 が卓越する状況での特性となっている.

入射角が深くなると ($\theta \ge 3^{\circ}$) 沿岸流が卓越するよう になる. $\theta = 3^{\circ}$ の場合は、CEWによる波浪変形効果が消 滅しはじめ、離岸流時に顕在化するCEWによる岸向き 運動量強化が起きにくくなる. このとき、CEWの有無 に関係なく、波向きに対応した方向に砕波項の沿岸成分 がバー周辺で帯状に強化され、地形効果による砕波項分 布変化の寄与が相対的に小さくなることで沿岸流が発達 する. 地形効果の縮退は、離岸流時に顕著であった CEWによる平均運動量沿岸成分バランスの改変を低減 し、結果としてCEWの効果がほぼ失われる.

 $\theta \ge 4^{\circ}$ では沿岸流のシア不安定に伴い,バー周辺に shear wave^{13, 18}が発生し,非定常な沿岸流場が形成される. $\theta = 3^{\circ}$ と同様にCEWの効果は平均流および平均運動量収 支にはほとんど現れないものの,乱流成分に対して相対 的に強く現れる.入射角が増すにつれて乱流エネルギー TKEも増大し,CEWによって沖側領域では乱れの抑制 が,岸側領域では反対に強化されることが示された.沖 でのTKEの抑制は,主にCEWによる岸沖乱流強度 $\langle u^{ms} \rangle$ の低減が鍵となっていた.

以上のことから、海浜流場におけるCEWの効果は、 離岸流、沿岸流等が卓越する海浜流システムの様々な regimeにおいてそれぞれに重要であることが示された. 特に定常離岸流場では、CEWによる波の屈折が引き金 となって生じる海浜流場の変化は劇的であった.本モデ ルと漂砂モデルをカップリングさせた最近の解析²³から, CEWによる離岸流抑制効果は,海浜地形変化に対して も多大な影響を与えることが分かりつつある.また,こ のような流況変化は砕波帯-陸棚間の物質混合²⁴,ひい ては生態系ネットワークなどに対して無視し得ない影響 を与えることが強く予見される.したがって,砕波帯周 辺における工学的諸問題にアプローチする際には, CEWの効果を正確かつ適切に考慮することが極めて重 要である.

謝辞:本研究は科学研究費基盤研究 C(24560622)の援 助を受けた.

参考文献

- Longuet-Higgins, M. S. and Stewart, R. W. : Radiation stress in water waves: A physical discussion, with applications, *Deep Sea Res.*, Vol. 11, pp. 529-562, 1964.
- Hasselmann, K. : On the mass and momentum transfer between short gravity waves and larger-scale motions, J. *Fluid Mech.*, Vol. 50, pp. 189-201, 1971.
- Phillips, O. M. : *The Dynamics of the Upper Ocean*, Cambridge University Press, Cambridge, U.K., 336pp, 1977.
- Bowen. A. J., Inman, L. and Simmons, V. P. : Wave setdown and set-up, *J. Geophys. Res.*, Vol. 73, pp. 2569-2577, 1968.
- 5) Bowen, A. J. : Rip currents, 1: Theoretical investigations, J. *Geophys. Res.*, Vol. 74, pp. 5467-5478, 1969.
- 6) 栗山善昭:砂浜砕波帯における流れと地形変化,な がれ、日本流体力学会, Vol. 24, pp. 47-55, 2005.
- Lentz, S. J., Fewings, M., Howd, P., Fredericks, J. and Hathaway, K. : Observations and a model of undertow over the inner continental shelf, *J. Phys. Oceanogr.*, Vol. 38, pp. 2341-2357, 2008.
- 8) Omand, M., Leichter, J., Franks, P. J., Guza, R. T., Lucas, A. and Fedderson, F. : Physical and biological processes underlying the sudden surface appearance of a red tide in the nearshore, *Limnol. Oceanogr.*, Vol. 56 (3), pp. 787 -801, 2011.
- Haas, K. A., Svenden, I. A. and Haller, M. C. : Numerical modeling of nearshore circulations on a barred beach with rip channels, *26th Int'l Conf. Coastal Eng.*, ASCE, pp. 801-814, 1998.
- Yu, J. and Slinn, D. N. : Effects of wave-current interaction on rip currents, *J. Geohpys. Res.*, Vol. 108 (C3), 3088, doi:10.1029/2001JC001 105, 2003.
- McWilliams, J. C., Restrepo, J. M. and Lane, E. M. : An asymptotic theory for the interaction of waves and currents in coastal waters, *J. Fluid Mech.*, Vol. 511, pp. 135-178, 2004.
- 12) Uchiyama, Y. and McWilliams, J. C. : Infragravity waves in the deep ocean: Generation, propagation, and seismic hum excitation, *J. Geophys. Res.*, Vol. 113, C07029, doi: 10.1029/2007JC004562, 2008.
- Uchiyama, Y., McWilliams, J. C. and Restrepo, J. M. : Wave-current interaction in nearshore shear instability ana-

lyzed with a vortex-force formalism, *J. Geophys. Res.*, Vol. 114, C06021, doi:10.1029/2008JC 005135, 2009.

- 14) Ardhuin, F., Jenkins, A. D. and Belibassakis, K. A. : Comments on "The three-dimensional current and surface wave equations", *J. Phys. Oceanogr.*, Vol. 38, pp. 1340-1350, 2008.
- 15) Lane, E. M., Restrepo, J. M. and McWilliams, J. C. : Wave-current interaction : A comparison of radiationstress and vortex-force representations, *J. Phys. Oceanogr.*, Vol. 37, pp. 1122-1141, 2007.
- 16) Weir, B., Uchiyama, Y., Lane, E. M., Restrepo, J. M. and McWilliams, J. C. : A vortex-force analysis of the interaction of rip currents and surface gravity waves, *J. Geophys. Res.*, Vol.116, C05501, doi:10.1029/2010JC006232, 2011.
- 17)内山雄介、甲斐田秀樹:流れから波へのフィードバック機構による離岸流の発達抑制メカニズム、土木学会論文集 B2(海岸工学), Vol.68, No.2, pp.I_36-I_40, 2012.
- 18) Ozkan-Haller, H. T. and Li, Y. : Effects of wave-current interaction on shear instabilities of longshore currents, J. *Geophys. Res.*, Vol. 108 (C5), 3139, doi:10.1029/ 2001JC001287, 2003.
- 19) Shchepetkin, A. F. and McWilliams, J. C. : The Regional

Oceanic Modeling System: a split -explicit, free-surface, topography-following-coordinate oceanic model, *Ocean Modell.*, Vol.9, pp. 347-404, 2005.

- Mei, C. C. : *The Applied Dynamics of Ocean Surface Waves*, World Scientific, Singapore, 740 pp, 1994.
- 内山雄介, J. C. McWilliams: Vortex-force を用いたオ イラー型位相平均プリミティブ方程式による海浜流 の3次元解析,土木学会論文集 B2(海岸工学), Vol.67, No.2, pp.I_96 -I_100, 2011.
- 22) Church, J. C. and Thornton, E. B.: Effects of breaking wave induced turbulence within a longshore current model, *Coastal Eng.*, Vol. 20, pp. 1-28, 1993.
- 23) Uchiyama, Y., Kaida, H. and Miyazaki, D.: Wave-current interaction in formation of rip channel system, *Proc. 7th International Conference on Asian and Pacific Coasts* (APAC 2013), Bali, Indonesia, pp. 173-179, 2013.
- 24) 内山雄介,甲斐田秀樹,J.C. McWilliams:VF型位相 平均 Primitive 方程式による砕波帯-陸棚相互作用に 関する研究,土木学会論文集 B2(海岸工学), Vol.69, No.2, pp. I_056-I_060, 2013.

(2013.7.1 受付)

WAVE-CURRENT INTERACTION IN DYNAMICS OF BAROTROPIC NEARSHORE CURRENT SYSTEM

Hideki KAIDA and Yusuke UCHIYAMA

We examine a wave-current interaction, in particular current effects on waves (CEW), in a nearshore current system developed on a single-barred, rip channel topography. An Eulerian phase-averaged shallow water equation with a vortex-force formalism tightly coupled with WKB refraction equations is exploited to conduct a comprehensive numerical experiment. If CEW is taken into consideration, wave ray bending occurs to induce the prominent reduction of offshore extent of rip currents with near-normal off-shore wave incidence. At deeper incident angles, longshore currents dominate over rip currents, resulting in eddying flows associated with shear instability around the bar crest. A diagnostic momentum budget analysis indicates that in the rip-dominant cases CEW alters the momentum balance significantly through modulation of the wavenumber field, leading to the enhancement of the onshore breaker acceleration and the pressure gradient force both in the alongshore and cross-shore directions. For the unstable longshore currents, CEW acts to diminish turbulence kinetic energy in the offshore region around the bar. Since the cross-shore turbulent intensity is more attenuated than the alongshore component, offshore eruption of the surfzone eddies is reduced by CEW.